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Abstract. The formation of spatio-temporal stable patterns is considered for a reaction-diffusion-convection system
based upon the cubic autocatalator, A+ 2B ! 3B;B ! C, with the reactant A being replenished by the slow
decay of some precursor P via the simple step P ! A. The reaction is considered in a differential-flow reactor
in the form of a ring. It is assumed that the reactant A is immobilised within the reactor and the autocatalyst B is
allowed to flow through the reactor with a constant velocity as well as being able to diffuse.

The linear stability of the spatially uniform steady state (a; b) = (�
�1
; �), where a and b are the dimensionless

concentrations of the reactant A and autocatalyst B, and � is a parameter reflecting the initial concentration of
the precursor P , is discussed first. It is shown that a necessary condition for the bifurcation of this steady state to
stable, spatially non-uniform, flow-generated patterns is that the flow parameter � > �c(�; �) where �c(�; �) is
a (strictly positive) critical value of � and � is the dimensionless diffusion coefficient of the species B and also
reflects the size of the system. Values of �c at which these bifurcations occur are derived in terms of � and �.
Further information about the nature of the bifurcating branches (close to their bifurcation points) is obtained from
a weakly nonlinear analysis. This reveals that both supercritical and subcritical Hopf bifurcations are possible. The
bifurcating branches are then followed numerically by means of a path-following method, with the parameter �
as a bifurcation parameter, for representatives values of � and �. It is found that multiple stable patterns can exist
and that it is also possible that any of these can lose stability through secondary Hopf bifurcations. This typically
gives rise to spatio-temporal quasiperiodic transients through which the system is ultimately attracted to one of the
remaining available stable patterns.

Key words: flow reactor, cubic autocatalator, absolute instability, travelling waves, Stuart-Landau amplitude
equation.

1. Introduction

The interaction of molecular diffusion with nonlinear kinetics in an initially-uniform reacting
chemical system, which is otherwise temporally stable, can lead to the uniform state becoming
unstable through a Turing or diffusion-driven instability [1], [2, Sects 14.2, 14.3], [3, Sect. 6.7]
and [4, Sect. 2.2]. In its simplest form this instability requires two species, an activator (or
autocatalytic species) and an inhibitor (whose role is to limit the autocatalytic growth) and also
that the diffusion coefficients of these two species should differ (usually considerably), with
that for the inhibitor being larger than that for the activator. The bifurcation from the spatially
uniform stationary state though this instability may give rise to pattern formation, i.e. to
stable, spatially non-uniform configurations of the reaction-diffusion system. The occurrence
of these patterns, originally predicted theoretically, has been verified experimentally [5–7].
They can also form the starting point through secondary and higher-order bifurcations, for the
development of complex spatio-temporal structures [6, 8–10].

More recently, a reactor has been designed in which the different transport rates for the
activator and inhibitor species is achieved by causing these species to flow through the reactor
with different velocities [11–13]. This configuration can also give rise to spatially uniform
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stationary states of the system becoming unstable through what is termed a differential-flow-
induced chemical instability (DIFICI). In this case the new stable structures that arise from
this bifurcation are travelling waves of permanent form propagating with constant velocity.
The interaction between Turing and DIFICI bifurcations has been shown, [14], to produce
complex time dependent spatial structures, including propagating stripes and spots.

Here we consider a model for the differential-flow reactor based on ‘cubic autocatalator’
kinetics in which a reactant A is formed at a constant rate from some precursor P , via

P ! A rate = �0P0; (1.1)

with the reactant A and autocatalyst B reacting further according to the scheme

A+ 2B ! 3B rate = �1ab
2; (1.2)

B ! C rate = �2b; (1.3)

(where a and b are the concentrations of chemical speciesA andB, respectively and �0; P0; �1

and �2 are all constants).
In this paper, we assume further that reactant A is effectively immobilised within the

reactor. This might be achieved, for example, by creating the reaction domain as a matrix of
small beads, with the reactant A adsorbed into the surface of these. The movement of the
autocatalyst B is considered not to be so constrained and this species is made to flow through
the reactor with a constant velocity u as well as being able to diffuse (with diffusion coefficient
DB). Note that we therefore have DB > DA, the opposite of the inequality appropriate to
Turing instabilities.

These considerations lead to the reaction-diffusion-advection equations for our model as

@a

@t
= �0P0 � �1ab

2; (1.4)

@b

@t
+ u

@b

@x
= DB

@2b

@x2 + �1ab
2 � �2b: (1.5)

A detailed derivation of these equations (without the flow term) including a validation of the
pooled-chemical approximation inherent in Equations (1.1)–(1.4) is given in [15, 16].

We solve Equations (1.4)–(1.5) subject to periodic boundary conditions at the ends of the
reaction domain x = 0 and x = l and to initial conditions which we leave unspecified for the
present. We impose these particular boundary conditions partly for ease in the calculations
described below, which enable considerable progress to be made analytically in understanding
the basic process involved, and partly for consistency with [14]. They are also not incompatible
with our model, since we can regard the reaction domain as forming a part of some larger
system in which a moving pattern has been created.

We start by making Equations (1.4)–(1.5) dimensionless and, to do so, we follow [15, 16]
by writing

a =

�
�2

�1

�1=2

a; b =

�
�2

�1

�1=2

b; t = �2t; x =
x

l
: (1.6)
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This leads to the dimensionless equations, where bars have been dropped for convenience

@a

@t
= �� ab2; (1.7)

@b

@t
= �

@2b

@x2 � �
@b

@x
+ ab2 � b (1.8)

on 0 6 x 6 1; t > 0, subject to the boundary conditions(
a(0; t) = a(1; t); ax(0; t) = ax(1; t); : : : ;

b(0; t) = b(1; t); bx(0; t) = bx(1; t); : : : :
(1.9)

The dimensionless parameters are given by

� =
�0P0

�2

�
�1

�2

�1=2

; � =
DB

�2l2
; � =

u

�2l
(flow parameter): (1.10)

A system similar to Equations (1.7)–(1.9) (without the flow term and with reactantA being
allowed to diffuse) has been studied previously [10, 17] and the conditions for the spatial
mode bifurcations to stable patterns were derived. The complex spatio-temporal structures
(including travelling waves and modulated travelling waves) which arise through spatial mode
interactions have also been determined.

Equations (1.7)–(1.9) have the unique spatially uniform stationary state S = f(a; b) =
(��1; �)g which is temporally stable for all � > 1, [15, 16]. Here we are concerned with
the study of bifurcations from this stable state to form new stable spatio-temporal patterns as
the parameter � (which we treat as our bifurcation parameter) is varied. In particular, we are
interested in how the differential flow of reactant and autocatalyst can destabilise S and thus
we restrict our attention to the case � > 1.

We begin by analysing the linear stability of the uniform steady state S.

2. Linear stability analysis

To determine the system linearized around S and to deduce its spectrum, which is equivalent
to finding the dispersion relation, we assume that, at t = 0, an initial disturbance of small
amplitude is imposed on the system. We represent this by the initial conditions

8><
>:
a(x; 0) =

1
�
+ �a0(x)

b(x; 0) = �+ �b0(x)

; 0 6 x 6 1; (2.1)

where a0(x); b0(x) are bounded functions on 0 6 x 6 1 and 0 < � � 1 is a measure of the
amplitude of the initial disturbance. We look for a solution of Equations (1.7)–(1.9), with the
initial conditions (2.1) in the form of
8><
>:
a(x; t) =

1
�
+ �a(x; t) + � � � ;

b(x; t) = �+ �b(x; t) + � � � ;
(2.2)
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where a; b are of O(1) as � ! 0.
After making these substitutions in Equations (1.7)–(1.9) and neglecting terms of O(�2),

we obtain the linear equations for a; b

@a

@t
= ��2a� 2b; (2.3)

@b

@t
= �

@2b

@x2 � �
@b

@x
+ �2a+ b (2.4)

on 0 6 x 6 1 and t > 0, subject to the initial and boundary conditions

a(x; 0) = a0(x); b(x; 0) = b0(x); (2.5)

(
a(0; t) = a(1; t); ax(0; t) = ax(1; t); : : : ;

b(0; t) = b(1; t); bx(0; t) = bx(1; t); : : : :
(2.6)

Boundary conditions (2.6) suggest that we look for a solution in the form

a(x; t) =
1X
n=0

fan(t) cos(2n�x) + bn(t) sin(2n�x)g; (2.7)

b(x; t) =
1X
n=0

fcn(t) cos(2n�x) + dn(t) sin(2n�x)g: (2.8)

When these expressions are substituted in the linearized system (2.3)–(2.4), we obtain the
system of linear ordinary differential equations for the Fourier coefficients an; bn; cn; dn8>>>>>>>>>>>><
>>>>>>>>>>>>:

dan
dt

+ �2an + 2cn = 0;

dbn
dt

+ �2bn + 2dn = 0;

dcn
dt

+ (k2
n � 1)cn + 
ndn � �2an = 0;

ddn
dt

+ (k2
n � 1)dn � 
ncn � �2bn = 0;

(2.9)

where k2
n = 4�2n2� and 
n = 2�n�. (2.10)

The solution to Equations (2.9) is obtained as

0
BBBB@
an(t)

bn(t)

cn(t)

dn(t)

1
CCCCA =

0
BBBB@
An

Bn

Cn

Dn

1
CCCCA exp(!nt); (2.11)

where!n = !n(kn; �; �) andAn; Bn; Cn;Dn are constants (possibly complex). On substitut-
ing (2.11) in Equations (2.9), we find a linear algebraic system for the An; Bn; Cn;Dn which
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has a nontrivial solution, provided each !n(n = 0; 1; 2; : : :) satisfies a quartic polynomial
equation. This gives the dispersion relation, which we can write as

(�n�n + 2�2)2 + �2
n


2
n = 0; (2.12)

where �n = !n+ �2 and �n = !n + k2
n � 1. The dispersion relation (2.12) can be factorised

into

!2
n + (pn � i
n)!n + qn � i
n�

2 = 0; (2.13)

!2
n + (pn + i
n)!n + qn + i
n�

2 = 0: (2.14)

for all n > 0, where we have written pn = k2
n+ �2 � 1; qn = �2(k2

n+ 1) > 0. We notice that
pn > 0; qn > 0 for all n > 0 and pn = 0 if and only if n = 0; � = 1.

If we denote by !in (i = 1; 2; 3; 4; : : : ; n = 0; 1; : : :) the four roots of the dispersion
relation (2.12) then the solution to the linear initial-boundary value problem (2.3)–(2.6) is
readily obtained as

a(x; t) =
1X
n=0

("
4X

i=1

Ai
n exp(!int)

#
cos(2n�x) +

"
4X

i=1

Bi
n exp(!int)

#
sin(2n�x)

)
;

b(x; t) =
1X
n=0

("
4X

i=1

Ci
n exp(!int)

#
cos(2n�x) +

"
4X

i=1

Di
n exp(!int)

#
sin(2n�x)

)
;

(2.15)

for 0 6 x 6 1; t > 0. Here Ai
n; B

i
n; C

i
n;D

i
n; (i = 1; 2; 3; 4; n = 0; 1; 2; : : :), are constants

related to the Fourier series expansions of the initial perturbation.
We now proceed to examine the dispersion relation in detail.

2.1. THE DISPERSION RELATION

The roots of Equation (2.13) can be expressed as a pair of complex conjugates

!1;2
n = ��n � i��n ; (2.16)

where

��n =
1
2

�
�pn �

1p
2
[En � 
2

n + [(En � 
2
n)

2 + 4
2
n(k

2
n � 1� �2)2]1=2]1=2

�
; (2.17)

��n =
1
2

�
�
n �

1p
2
[
2
n �En + [(
2

n �En)
2 + 4
2

n(k
2
n � 1� �2)2]1=2]1=2

�
; (2.18)

Here En = p2
n � 4qn. For Equation (2.14) the two eigenvalues are given by

!3;4
n = ��n + i��n ; (2.19)

so that !1;2
n = !3;4

n , where the overbar denotes the complex conjugate operator.
It is readily established that
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(i) ��0 6= 0; ��n 6= 0 (for all n = 1; 2; : : :), except when � = 0. Note that �+0 can be zero for
some � > 1 with

E0 = (�2 � 1)2 � 4�2 > 0; (2.20)

(ii) ��n < 0; �+n ? 0; �+n > ��n ; for all n = 0; 1; 2; : : : : (2.21)

We note that �+0 6= 0 for E0 > 0.
From (i) and (ii) we have that !in; (i = 1; 2; 3; 4) are always complex (for n > 0) and

that only Ref!1
ng = Ref!3

ng can be positive.
(iii) �+n has an horizontal asymptote when �!1(
n !1). (2.22)
(iv) for each n = 0; 1; 2; : : :, there is at most one � = �c such that

�+n (�c) = 0 and
d�+n
d�

(�c) > 0: (2.23)

The proof of (iii) and (iv) requires knowledge of the neutral curve and this is what we now
discuss.

2.2. THE NEUTRAL CURVE AND STABILITY

We can most easily find the conditions required for local temporal stability of the steady-state
S by constructing the neutral curve. This is defined in the first quadrant of the (kn; �)-plane
as the locus of those points for which Ref!1

ng(= Ref!3
ng = �+n ) = 0 and is the curve

which divides the quadrant into regions corresponding to exponential growth (or decay) of
the modes an(t); bn(t); cn(t); dn(t); (n = 0; 1; : : :). On using either (2.13)–(2.14) or (2.17)–
(2.18), together with (i), (ii) above, we substitute for !n = i�jn; j 2 f�;+g and find the
following form for the equation of the neutral curve

�2
c(kn) =

8>>>><
>>>>:

�(k2
n + �2 � 1)2(1 + k2

n)

k2
n(1� k2

n)
; � > 1;

�k2
n(1 + k2

n)

1� k2
n

; � = 1:

(2.24)

As can be seen from expression (2.24), the neutral curve has a vertical asymptote at kn = 1
and, for � > 1, a vertical asymptote also at kn = 0. In both cases it exists only for 0 < kn < 1.
Graphs of the neutral curve for representative values of � are given in Figures 1(a) and 1(b),
corresponding to the differing cases � > 1 and � = 1. The neutral curves have a qualitatively
similar convex shape for all � > 1. For � = 1 the neutral curve is monotonically increasing.

We can establish that the neutral curve is convex for all � > 1 with an unique minimum in
(0, 1). To do so we work with the function

f(y) =
(y + �2 � 1)2(1 + y)

y(1� y)
(2.25)

on 0 < y < 1, where we have put y = k2
n. From (2.25) it is straightforward to show that

f 00(y) =
(�4 + 2�2 � 1)y3 + 3(�2 � 1)2 y2 � 3(�2 � 1)2 y + (�2 � 1)2

y3(1� y)3 : (2.26)
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Figure 1. Neutral curves (2.24) for the two cases: (a) � > 1 (here plotted for � = 2); (b) � = 1.

The numerator in expression (2.26) is positive for all 0 < y < 1; � > 1 hence f 00 > 0 on
(0, 1). This establishes that f is convex on (0, 1), implying that �c is as well.

To obtain the minimum value of � in (2.24) we notice that putting f 0(y) = 0 is equivalent
to solving

�y3 + (�2 + 1)y2 + (2�2 � 1)y � (�2 � 1) = 0: (2.27)

We can obtain the value of that unique y� = y�(�
2) in (0, 1) which satisfies (2.27) by using

Cardano’s formula. When we substitute for this value in f (and so for �), the expression
obtained is of little use in practice. However, we can give some results which describe the
behaviour of y�(�2)

(i) y�(�
2) <

p
2� 1: (2.28)

To see this we express Equation (2.27) in the form

�2 =
(1� y�)(1 + y2

�)

1� 2y� � y2
�

� h(y�): (2.29)

Then for this to be positive (with y� < 1) we must have the denominator positive and the
result follows.

(ii) y� = 0 when � = 1: (2.30)

(iii) y� increases monotonically with �: (2.31)

To show this, we consider the function h(y�) defined by Equation (2.29) on 0 6 y� <
p

2�1.
Then

h0(y�) =
(y�)

4 + 4(y�)3 � 6(y�)2 + 4y� + 1
((y�)2 + 2y� � 1)2 > 0
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Figure 2. A graph of y
�
(�

2
), the abscissa of the unique minimum on the neutral curve given by (2.24) for � > 1.

Asymptotic expression (2.33) is shown by the broken line.

on its domain, with a vertical asymptote at y� =
p

2� 1, and the result follows.
It is also straightforward, using standard perturbations methods, to show that

y�(�
2) = (�2 � 1)� 4(�2 � 1)2 + 24(�2 � 1)3 + � � � ; as �! 1+; (2.32)

y�(�
2) =

p
2� 1 +

4� 3
p

2
�2 +

31� 22
p

2p
2�4

+ � � � ; as �!1: (2.33)

In Figure 2 we plot a graph of y�(�2) against �2 which shows the monotone behaviour and the
horizontal asymptote at

p
2� 1 as �2 !1; the broken line shows the asymptotic expression

(2.33). To complete the description of the neutral curve we notice that a special case occurs
when � = 1. As � decreases to 1, expression (2.32) shows that the vertex (minimum) of the
neutral curve gets closer to zero, while still preserving the convex shape. When � = 1, the
curve now connects the point (0, 0) monotonically to the point at infinity along the vertical
asymptote at kn = 1.

This discussion gives a clear picture of the form of the neutral curve for all values of � > 1.
Any point below the neutral curve has Ref!ing < 0; i = 1; 3, (corresponding to a stable
uniform state), while any point above it has at least one eigenvalue with Ref!ing > 0 leading
to (linear) instability.

For given values of � and � let M be the unique integer such that

4�2M2� 6 y�(�
2) 6 4�2(M + 1)2�: (2.34)

Since the stability of the steady-state S requires Ref!in(kn; �; �)g = �+n (kn; �; �) < 0 for
each i = 1; 3 and for each n = 0; 1; 2; : : :, it is clear from (2.24), (2.34) and the above
discussion that the necessary and sufficient condition for the local temporal stability of S is
provided by

� < �Mc (�; �) = minf�1; �2g; (2.35)

where

�
2
1 =

8>><
>>:
�(4�2M2�+ �2 � 1)2(1 + 4�2M2�)

4�2M2�(1� 4�2M2�)
; M 6= 0;

0; otherwise;

(2.36)
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�
2
2 =

8>><
>>:
�(4�2(M + 1)2�+ �2 � 1)2(1 + 4�2(M + 1)2�)

4�2(M + 1)2�(1� 4�2(M + 1)2�)
; M <

1

2�
p
�
� 1;

0; otherwise;

(2.37)

with M given from (2.34).
We conclude that, for each � < �Mc , every term in (2.7)–(2.8) decays exponentially as

t!1 and any small disturbance imposed upon S will die away. However, if � > �Mc , there
are terms in (2.7)–(2.8) which grow exponentially as t!1 and the system will diverge from
the spatially uniform stationary state S when perturbed. Thus we restrict attention to the case
where � > �Mc (�; �).

We are now in a position to consider the possibility of nontrivial pattern formation in our
system, i.e. to take account of circumstances under which a small amplitude-disturbance to
the stationary state S will evolve into a small, but finite amplitude, spatially and/or temporally
stable periodic state. As we will see later, any such bifurcation will produce a spatio-temporal
symmetry-breaking, leading to the appearance of a both spatially non-homogeneous and
temporally periodic pattern in the form of a periodic travelling wave.

2.3. LOCAL BIFURCATION THEORY

We first establish that the neutral curve corresponds to Hopf bifurcations, i.e. for each fixed
n = 0; 1; : : :, the system undergoes a Hopf bifurcation at � = �c(kn), given by (2.24), where
�+n = 0 (= Ref!ing; i = 1; 3). In doing so we will also complete the proof of the properties
(iii), (iv) of the eigenvalues given by (2.22), (2.23). It is straightforward to show that, when
�+n = 0

���n = Imf!ing = 1
2 (
n +

q

2
n + 4qn) > 0; i = 1; 3: (2.38)

It is again easy to see (from (2.17)) that � < �c (� > �c) if and only if �+n (�) < �+n (�c)
(respectively �+n (�) > �+n (�c)) which proves the uniqueness of �c. We also need to establish
the transversality condition

d�+n
d�

(�c) > 0: (2.39)

To do so, we start by noting that

lim

n!1

�+n (
n) = 1� k2
n > 0: (2.40)

We then assume the contrary, i.e. that d�+n =d�(�c) 6 0. This implies that �+n is locally
decreasing around � = �c. Consequently there is a number �1 such that �c < �1 and:
0 = �+n (�c) > �(�1). But �+n (�

1) 6= 0, because there is a unique �c for given kn and given
values of the other parameters. Thus �+n (�

1) < 0. However lim�!1 �+n (�) > 0 from (2.40).
Thus there must be a �2 > �1 such that �+n (�

2) = 0, which is a contradiction.
The conditions for a Hopf bifurcation at � = �c(kn) are satisfied (see, for example, [18,

Chapter 11]) and a unique limit cycle with amplitude of O(j� � �cj1=2) for j� � �cj �
1 is born as the neutral curve is crossed. The stability of this limit cycle needs further
consideration and will be addressed below when we consider a weakly-nonlinear analysis.
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The oscillatory behaviour of the Fourier coefficients in (2.7)–(2.8) (or the purely imaginary
nature of an !in (i = 1; 2; 3; 4) in expressions (2.15)) corresponds to travelling waves in
the original reaction-diffusion-convection system. Thus this DIFICI instability gives rise to
spatio-temporal structures in the form of travelling waves at the primary bifurcation from the
spatially uniform stationary state S.

Further information about these bifurcation points can be given at this stage. By definition
the first bifurcation occurs at � = �Mc when kn = kMn corresponding to the integer (see
(2.35)–(2.37))

nM =

8>><
>>:

0; �1; �2 = 0;

M; �1 < �2;

M + 1; �1 > �2:

(2.41)

We have

nM = 0; if � >
1

4�2 ; (2.42)

nM = 1; if
1

16�2 < � <
1

4�2 ; (2.43)

nM = 2; if
1

36�2 < � <
1

16�2 ; (2.44)

(for (2.44) see Section 3, relation (3.29)) and so on.
We can also give information about the number of local bifurcations occurring in � > �Mc .

From (2.24), (2.37), (2.42) we have that, if � > 1=4�2, then the only local bifurcation point
in � > �Mc is that at � = �Mc = 0 which corresponds to � = 1; kMn = 0. This leads to a
spatially homogeneous, temporally periodic solution which is stable when 0 < 1 � � � 1.
This corresponds to the limit cycle of the well-stirred system and we would expect only
homogeneous (trivial) pattern formation in our system for � > 0 as no further local bifurcation
can appear in this range. For � > 1 (and � = 0) the steady-state S remains locally and
absolutely stable. However, for � < 1=4�2, the total number of local bifurcations in � > �Mc
is N , where N is the unique integer defined by

1

2�
p
�
� 1 6 N <

1

2�
p
�
: (2.45)

Thus, the linearized theory has enabled us to identify the bifurcations points in � > �Mc . The
nature of the bifurcation and the spatially non-uniform structures to which the system could
evolve when the stationary state S is unstable can be determined only by a consideration of the
full nonlinear problem. To treat this aspect we start by deriving a weakly-nonlinear analysis
valid close to �c and extend this by numerical solutions of Equations (1.7)–(1.9).

3. Weakly-nonlinear analysis

We start by considering the solution near the Hopf bifurcation points identified above to see
how the small linear growth rate for conditions close to neutral stability can be balanced by the
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weak nonlinear decay to produce equilibrated patterns at small amplitude. We have seen in the
previous section that, in order for the system to bifurcate locally to a stable non-homogeneous,
temporally periodic (flow-generated) pattern, we must have � > 1 and �Mc > 0. This, in turn,
gives a necessary condition for the local bifurcation to stable pattern forms that

4�2� < 1; � > 1: (3.1)

We will now suppose that �; � satisfy these conditions. In this case each bifurcating solution
with a wave number kn = 2n�

p
�; (n = 1; 2; : : :) corresponds to a bifurcation value of the

parameter

�2
n(kn) =

�(k2
n + �2 � 1)2(1 + k2

n)

k2
n(1� k2

n)
: (3.2)

For (3.2) we require that k2
n = 4�2n2� < 1. We now consider values of � such that 0 <

j�� �nj � 1 and construct an approximation for the new bifurcated pattern valid at least for
� in this weak nonlinear limit. Also in this case we will consider that the pattern is obtained
by evolution from initial conditions with only the wave number kn present.

The method we use is similar to that described in [15] and [16]. We begin by putting

� = �n + "2�; 0 < "� 1; (3.3)

with �n given by (3.2) and where � 2 f�1; 1g. Specifically � = 1 when the new pattern
bifurcates initially into � > �n or � = �1 when the new pattern bifurcates initially into
� < �n. The next step is to expand the solution about the stationary state S in powers of ".
At O("3) we find that the cubic nonlinearity reproduces the fundamental neutral mode as an
inhomogeneous forcing term rendering the expansion non-uniform when t is of O("�2). We
remove this difficulty by using the method of multiple scales [19, Sect. 3.6], where we allow
our solution to depend on the slow time � = "2t. This has the effect of removing the secular
terms which arise at O("3). Thus we start by putting8><
>:
a(x; t; �) =

1
�
+ a1"+ a2"

2 + a3"
3 + � � � ;

b(x; t; �) = �+ b1"+ b2"
2 + b3"

3 + � � � ;
(3.4)

where the coefficients ai; bi, are all functions of x and the two time variables t and � .
We introduce the linear matrix differential operator

L = Lc =

0
BB@

@

@t
+ �2 2

��2 @

@t
� �

@2

@x2 + �n
@

@x
� 1

1
CCA : (3.5)

Also we recall that !cn = !n(�n) = �i��n with ���n > 0 (see (2.18)). In the sequel we
shall denote (for convenience) ���n = �n > 0. The leading-order terms satisfy the linear
homogeneous problem (2.3)–(2.6) with � replaced by �n. That is

Lc

 
a1

b1

!
=

 
0

0

!
: (3.6)
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The solution of these equations can be written in terms of Fourier series with all wave numbers
present. However, with� close to�n and for initial conditions which contain only the particular
wave number kn (with �n given by (3.2)), there is only a neutral mode. Consequently our
solution will approach this mode in the limit as t!1 and from (2.15) we find 

a1

b1

!
=

 
A1 exp(i�nt) +A2 exp(�i�nt)
C1 exp(i�nt) + C2 exp(�i�nt)

!
cos(kx)

+

 
B1 exp(i�nt) +B2 exp(�i�nt)
D1 exp(i�nt) +D2 exp(�i�nt)

!
sin(kx);

with k = k(n) = 2n�. Here Ai; Bi; Ci;Di; (i = 1; 2) are the Fourier coefficients which are
mentioned in (2.15) and from the linear algebraic system we find that they satisfy

A1

C1
=

B1

D1
=

�2
�2 + i�n

;
A2

C2
=

B2

D2
=

�2
�2 � i�n

;
D1

C1
= �i; D2

C2
= i: (3.7)

Thus we have the solution to (3.6) in the form 
a1

b1

!
= A(�) exp(i(�nt� kx))

 
d1

d2

!
+A(�) exp(�i(�nt� kx))

 
d1

d2

!
; (3.8)

with d1=d2 = �2=(�2 + i�n) and where A is, at this stage, an undetermined amplitude.
At O("2) we have the linear inhomogeneous problem (the difference with the previous

stage being that we now have quadratic forcing terms on the right-hand side resulting from
the nonlinear interaction of the leading-order terms)

Lc

 
a2

b2

!
=

 
�1

1

! 
2�a1b1 +

b2
1

�

!
: (3.9)

After some algebra we find that the solution of this problem, in the limit as t!1, is 
a2

b2

!
=
jAj2E
�2

 
�1

0

!
+
A2F

�

 �(4k2
n + 1 + 2i(�n � 
n))

2i�n

!

� exp(2i(�nt� kx)) + c:c:+B

 
a1

b1

!
(3.10)

where B is a further function of the slow time � and where

F = 2�d1d2 +
d2

2

�
; E = 2�(d1d2 + d1d2) +

2jd2j2
�

; (3.11.1)

� = (4k2
n + 1)�2 � 4�n(�n � 
n) + 2i[�n(4k

2
n + �2 � 1)� 
n�

2]: (3.11.2)

At O("3) we find again a linear inhomogeneous problem, but now the right side contains
forcing terms arising from the nonlinear interaction of the previous terms in the expansion

Lc

 
a3

b3

!
=
�@
@�

 
a1

b1

!
� �

 
0 0

0 1

! 
ra1

rb1

!
+

 
�1

1

!

�
�

2�(a1b2 + a2b1) +
2
�
b1b2 + a1b

2
1

�
: (3.12)
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At this stage it can be seen that, when analysing the nature of the solution to this equation
at t ! 1, we find resonant terms. They can have various possible sources, but our method
allows us to remove them and, following the method of multiple scales, we equate these terms
with zero. This leads to an equation for the complex amplitude A(�) which is the Stuart–
Landau amplitude equation associated with the corresponding DIFICI bifurcation. In fact this
is equivalent to applying the solvability criterion for the linear operator Lc.

This complex amplitude is most conveniently expressed as

A(�) = R(�) exp(i�(�)); (3.13)

where R > 0 and � are the real, slowly-varying amplitude and phase. We obtain, after a long
but straightforward calculation, that

dR
d�

= CR(�1R
2 + �1�); (3.14)

where C is a constant, positive for all values of the parameters, given by

C�1 =
4�4(�4 + 2�2(k2

n � k4
n) + (k2

n � 1)2)

(1� k2
n)

2 ;

and where

�1 =
8
3
�8 (1 + k2

n)(P2(k
2
n) + �2P3(k

2
n))

(1� k2
n)

3(1� k2
n + 4k4

n + 4k6
n)
; (3.15)

where

P2(k
2
n) = 36k10

n � 32k8
n + 3k6

n � 18k4
n + 15k2

n � 4; (3.16)

P3(k
2
n) = 24k8

n � 76k6
n + 18k4

n � 7k2
n + 1; (3.17)

�1 = (8n�)�6

s
1 + k2

n

1� k2
n

> 0: (3.18)

Reusing, for simplicity, the notation y = k2
n; 0 < y < 1, we note that

P2 = (y � 1)(36y4 + 4y3 + 7y2 � 11y + 4);

P3 = (6y � 1)(4y3 � 12y2 + y � 1):

Consider Equation (3.14) with an initial condition R(0) = R0 > 0. If �1 < 0, we take
� = 1, so that the bifurcated pattern form starts, initially at least, in � > �n. From (3.14) we
find that

R2(�) =
R2

0�1

(�1 + �1R
2
0) exp(�2�1�)� �1R

2
0
; (3.19)
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Figure 3. A graph of F (y) = P3(y)=(�P2(y)), where P2(y) and P3(y) are defined from (3.16–3.17). y� = 1
6 is

the only zero of P3(y) on (0; 1). The broken line indicates the values of ��2 at which �1 = 0.

and we deduce that the nontrivial steady-state of Equation (3.14), which corresponds to an
oscillatory solution in the original problem

Rs =

s
�1

j�1j
(3.20)

is stable. However, if �1 > 0, we take � = �1 and the bifurcated pattern appears initially in
� < �n. A further consideration of Equation (3.14) shows that, in this case, the solution is

R2(�) =
R2

0�1

�1R
2
0 � (�1R

2
0 � �1) exp(2�1�)

! 0 as � !1

and the nontrivial steady state Rs =
p
�1=�1 is unstable with the trivial steady state, Rs = 0,

now being stable.
This leads us to consider the function �1 = �1 (y) for 0 < y < 1. It is clear that its

denominator is positive. We also find that P2 < 0 for all y in (0; 1) and that P3 = 0 has
only one solution y = y� = 1

6 in (0; 1) with P3 > 0 for y < y�. For given � > 1 it is easy
to see that g(y) = P2(y) + �2P3(y) 6 0 if 1 < � 6 2 and for � > 2 there is an unique
y = y0(�) in (0; y�) such that g(y) = 0. To see this, we have plotted the graph of the function
F (y) = P3(y)=(�P2(y)) in Figure 3 from which we observe that �1 = 0 if and only if
F (y) = 1=��2. This clearly has an unique solution y = y0 (�) for given � > 2 (a typical
example is illustrated in Figure 3). We conclude that

�1 < 0 if 1 < � 6 2 and also if � > 2 for y0(�) < y < 1;

and

�1 > 0 if � > 2 for 0 < y < y0(�): (3.21)

The phase equation is found in a similar manner as

d�
d�

= �2R
2 + �2; (3.22)
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with R given by Equation (3.14) and where

�2(y) = �8
3
C�8 P4(y) + �2P5(y)

(1� y)2(1� y + 4y2 + 4y3)

s
1 + y

1� y
; (3.23)

with

P4(y) = 36y5 + 28y4 � 69y3 + 7y2 � 3y + 1;

P5(y) = �24y4 + 16y3 � 6y2 � 6y + 4

and

�2(y) = C(8n�)�6 (�
2 + y � y2)

(1� y)2 : (3.24)

Equation (3.22) can be integrated once R is known from Equation (3.14).
This discussion leads to the following conclusions for pattern formation as the parameters

�; �; � of our system are varied (we will denote by �n;i the value of � at the bifurcation
value with wave number ki). Take first the case when only the first mode (n = 1) has linear
growth with the uniform state being stable to all other modes (n = 2; 3; : : :). This requires
the condition

1
4 < 4�2� < 1: (3.25)

Hence in this case y > 1
4 > y� and the bifurcation is always supercritical (stable). From (3.8),

(3.13) we find the form of the solution branches for a and b to be as follows

a(x; t; ") = ��1 + 4R(�) cos(�nt� kx+ �(�))(�� �n)
1=2 + � � � ;

b(x; t; ") = �+ 2
q
�2
n + �4R(�) cos(�+n t� kx+ �(�))(�� �n)

1=2 + � � � :
(3.26)

In the limit of t ! 1 equilibrated pattern forms are obtained from (3.26) if we replace
R(�) with Rs (given from (3.20)) and �(�) with �ns � + �0 (�0 is an arbitrary constant) where:
�ns = �2R

2
s + �2. These solutions are periodic travelling-wave solutions of our system with

amplitude An
s = 2Rs(�� �n)

1=2 + � � � ;

period T n
s =

2�
�n + �ns (�� �n) + � � �

:
(3.27)

Both solutions are dependent on an arbitrary phase �0 (this is to be expected, as our system
is invariant to the change of co-ordinates: x ! x + � mod(1)). From (3.27) we have that
An
s is of O(j� � �nj1=2), while the correction to the period is O(j� � �nj) as � ! �n.

A graph of the amplitude Rs (as given by (3.20)) with respect to the first wave number
(k1 = 2�

p
�; 1=16�2 < � < 1=4�2) is shown in Figure 4.

Next consider the case when the dimensionless parameters are such that the first two modes
can grow (n = 1; n = 2)with all the other modes remaining stable. This requires the condition

1
9 < 4�2� < 1

4 : (3.28)
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Figure 4. A graph of Rs as given by (3.20), against the first wave number k1.

Now for given � > 1; y = 4�2� can lie in one of the ranges: 1
9 < y < y0(�); y0(�) < y < 1

4 .
We will show now that in either case the primary bifurcation from the stationary state S is
always supercritical (stable). In fact from (3.20)–(3.21) this needs to be proved only in the
case when � > 2 and 1

9 < y < y0(�). Also in this case we have k2
2 = 4y > 4

9 >
1
4 , so that the

only possible subcritical bifurcation arises at � = �n;1. However, we have the inequality

�n;1 > �n;2: (3.29)

To establish this result we require to show, on using expression (2.24) for �n;1 and �n;2 that

 
�2 + y � 1
�2 + 4y � 1

!2

>
(1 + 4y)(1� y)

4(1� 4y)(1 + y)
; (3.30)

for 1
9 < y < 1

6 . Consider

G(y) =

s
(1 + 4y)(1� y)

4(1� 4y)(1 + y)
;

(clearly G(y) < 1 on 0 < y < y� = 1
6 ). Then (3.30) can be written as

��2 < H(y) for 1
9 < y < y0(�); (3.31)

where

H(y) =
1�G(y)

(4y � 1)G(y) + 1� y
:

We find that H is strictly decreasing, so that H(y) > H(y0(�)) for y < y0(�). From (3.21)
it only remains to compare H(y0(�)) with F (y0(�)). A consideration of the difference H-F
shows that it is always positive in (0; y�), which completes the proof of (3.29).

An examination of the above proof shows that it is in fact valid for all 0 < y < y�, so
that we have in general that �n;1 > �n;2. From this we can immediately deduce that the
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first bifurcation is also supercritical in the case with three unstable modes (we note that this
requires 1

16 < y = 4�2� < 1
9 , but we have k2

2 = 4y > 1
4 > y� and k2

3 = 9y > 9
16 > y�). We

are able to extend this result to show that the primary bifurcation is supercritical when n > 7.
To do so, we note that the first bifurcation corresponds to the integer M as given by (2.34),
(2.41). We need to prove the required result only when � > 2 and on using property (2.31) for
y�(�

2), we have

yM = 4(M + 1)2�2� > y�(�
2) > y�(4) = 0�348 � � � = y1: (3.32)

Now the general condition for unstable modes is

1
(n+ 1)2 < 4�2� <

1
n2 : (3.33)

Combining (3.32), (3.33) we then have that M > n
p
y1 � 1. In this case we see that

yM�1 = 4M2�2� > 1
6 = y� provided that n > 7�751. We are unable to prove this general

property of the first bifurcation directly for the remaining cases n = 4; 5; 6; 7. However,
numerical evidence strongly suggests that it is true in these particular cases as well.

We can now complete this discussion by summarising the general case when any finite
number of modes become unstable:

� If 1 < � 6 2 all the bifurcations from the branch of the steady-states S are supercritical
and thus, at least initially, the new bifurcating solutions are partially stable. This means
that these patterns are temporally stable to perturbations composed of all except a finite
set of wave numbers kn. In fact this set of wave numbers, to which the bifurcating patterns
are unstable, is included in the set of wave numbers associated with bifurcations at values
smaller than or equal to �.

� If � > 2 the primary bifurcation still remains supercritical, while the secondary, tertiary,
etc., bifurcations from the branch of the stationary states S will produce partially stable
solutions which are locally subcritical if they start at � = �n;i with the corresponding
wave number kin such that �1(y) = �1((k

i
n)

2) > 0 and supercritical otherwise.

4. Numerical results

4.1. NUMERICAL METHOD

We use a combination of two numerical procedures which enables us to check the analytical
results of the previous sections and also to extend the bifurcating patterns well away from the
bifurcation points. The first procedure used was the spectral decomposition together with the
numerical continuation package PATH [20]. This procedure has several major advantages in
that it

(i) finds very accurately the primary bifurcating points;
(ii) calculates the temporal eigenvalues at each point and thus the stability of the solution is

determined;
(iii) allows us to plot a measure of the solution and to construct the bifurcation diagrams.

The second method was to obtain complete numerical solutions for the full initial-boundary-
value problem (1.7–1.9). An implicit Crank–Nicolson discretization method was used in which
the derivatives in time were replaced by forward differences and all other terms averaged over
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the time step. In these equations space derivatives were replaced by central differences.
We solved the resulting sets of nonlinear algebraic equations using the Successive-Over-
Relaxation iterative method which was deemed to be convergent if

�a(s) = maxfja(s)i � a
(s�1)
i j; i = 1; : : : ; ng < "; (4.1)

�b(s) = maxfjb(s)i � b
(s�1)
i j; i = 1; : : : ; ng < "; (4.2)

where: n is the number of the grid points used in the discretization of the interval (0; 1), the
notation ( )i means the value of the solution at the grid point xi, the superscript s is the order
of iteration and " is a measure of the accuracy, typically " = 10�9. This procedure was found
to converge quickly, usually taking between five and ten iterations at each time step. Care
was taken in order to ensure that the numerical solutions were independent of the mesh size.
Values of n = 100 (giving �x = 0�01) and a time step, dt = 0�0025, were used for the
results which are presented. We present our bifurcation diagrams, using b(0; t) as a measure
of the solution and for simplity we present only the upper branches of these solutions. (For
non-uniform states there is also a corresponding lower branch, which is qualitatively similar
to the upper branch.)

4.2. NUMERICAL RESULTS

We illustrate the different cases that were found from our weakly-nonlinear analysis. Take
first the case when only the first mode with the wave number k1 is unstable. Thus we have
1
4 < k2

1 < 1 and in this case the only possibility is a supercritical primary Hopf bifurcation. To
illustrate this case, we took�= 0�01; � = 2, giving�n;1 = 0�82022. The bifurcated travelling-
wave-solution branch obtained from PATH is given in Figure 5(a). The stable pattern emerged
at �n;1 into � > �n;1 and remained stable for all the � computed (up to � = 75). We also
present a comparison between the analytically and numerically determined values of b(0; t)
for � close to �n;1 in Figure 5(b). The analytical amplitude is obtained from (3.26), (3.27) as

Ab = 2
q
�2
n + �4Rs(�� �n;1)

1=2;

where here Rs = 0�25073 and �+n = 6�0723. The two values are in good agreement close
to �n;1 and diverge slowly (as expected) as � is increased. PATH also gives the period for
each value of the parameter and this was also found to be in very good agreement with our
analytical results (3.27). The travelling waves profiles for a range of values of � for this case
are shown in Figures 5(c) (for a) and 5(d) (for b) with these profiles being plotted after a
sufficiently long time had passed for any transients to have died out. These figures show that,
in each case, a single period travelling wave is produced in which the amplitude of the wave
in a decreases as � is increased (by � = 75�0 this wave is almost indistinguishable from S).
The concentration b undergoes greater variations and this remains so as � is increased.

Next consider the case when the modes with wave numbers k1; k2 become unstable. We
have seen that there are three cases to consider, namely when 1 < � 6 2 with all the
bifurcations from the steady-state solutions S being supercritical and when � > 2 with
two different cases depending on whether y0(�) < k2

1 < 1
4 (with all the bifurcations being

supercritical) or 1
9 < k2

1 < y0(�), giving �n;1 > �n;2, (with the bifurcation at �n;1 being
subcritical). The first case (1 < � 6 2) is illustrated in Figure 6 where we took a case when
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Figure 5. (a) Bifurcation diagram (plot of b(0; t) against �) for � = 2�0; � = 0�01, (one wave number unstable), � represent the primary Hopf bifurcation; (b) a
comparison between numerical (broken line) and analytical solution (full line); travelling wave profiles; (c) for a; (d) for b, for a range of value of �.
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Figure 6. Bifurcation diagram for � = 2�0; � = 0�003 (two wave numbers unstable); � represents the primary
Hopf bifurcation; � represents secondary bifurcations.

1
9 < k2

1 = 0�1184 < y0 in order to compare it with the similar case when � > 2, taking
values � = 0�003 and � = 2 (giving �n;1 = 0�559; �n;2 = 0�4625) being used for this figure.
Here the bifurcation diagram is more complicated. The primary bifurcation is at �n;2 and
produces stable patterns in � > �n;2. These lose stability at � = 1�05 at a secondary Hopf
bifurcation point and remain unstable as � is increased. The unstable, secondary branch of
solutions emerging at �n;1 into � > �n;1 becomes stable at � = 0�565 at another secondary
Hopf point with this branch of solutions remaining stable as � is increased to large values.
Thus, we have a parameter region with multiple locally absolutely stable patterns, a situation
different to the previous studies of this model in the absence of the flow [15, 16, 17].

Stable travelling waves arising from the primary bifurcations are illustrated in Figures 7(a)
and (b) (for � = 0�5). Here we can see a doubly-periodic structure to the pattern form resulting
from this primary bifurcation being associated with the wave number k2. Stable patterns on the
secondary solution branch are illustrated in Figures 7(c) and (d) (for � = 2). These show the
single periodic behaviour associated with bifurcations with wave numberk1. The existence of
the two stable travelling waves is illustrated in Figures 7(e) and (f) where we plot concentration
profiles for � = 0�8. These are both stable, the singly-periodic wave emanating from �n;1 and
the doubly-periodic one from �n;2. This figure shows that the profiles for the doubly-periodic
waves have a sinusoidal form, whereas the singly-periodic waves have a ramp-like form for a
and a pulse-like form for b. This becomes more pronounced as � is increased (see Figures 7(g)
and (h) where we plot profiles for � = 25�0).

The second possibility is illustrated in Figure 8, where we took � = 3; � = 0�0043 giving
�n;1 = 1�5433; �n;2 = 1�5796. In this case k2

1 = 0�1697 > y0(�) = y0(3) = 0�1242 and
both branches start in the supercritical parameter region. This situation is very similar to the
case when only the first mode is unstable. Despite starting at very close bifurcation points,
the unstable oscillatory solution born at �n;2 does not interact with the stable pattern arising
at �n;1.

The third possibility is illustrated in Figure 9(a), where we have taken � = 3; � = 0�003
so that �n;1 = 1�455; �n;2 = 1�128. Here the picture is very similar to the case illustrated in
Figure 6. The main difference is that now the unstable pattern starting at �n;1 goes initially
into � < �n;1 in a very narrow region. This accords with our nonlinear analysis, because in
this case we have 1

9 < k2
1 = 0�1184 < y0(�) = y(3) = 0�1242 < 1

6 (see Figure 9(b) where
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Figure 7. Stable patterns (travelling waves) for � = 2�0; � = 0�003 for (a) a; (b) b for � = 0�5; (c) a; (d) b for � = 2�0; (e) a; (f) b for � = 0�8 showing the two
possible stable travelling waves; (g) a; (h) b for � = 25�0 showing the ramp-like behaviour for a and the pulse-like behaviour for b.
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Figure 8. Bifurcation diagram for � = 3�0; � = 0�0043.

Figure 9. (a) Bifurcation diagram for � = 3�0; � = 0�003; (b) a magnification of the branch at �n;1 to show that
it emerges into � < �n;1.

we give a magnification of the portion of the diagram in Figure 9(a) to show more clearly
the subcritical case). There then follows a saddle-node bifurcation which turns this solution
branch to the right with respect to the direction of the parameter.

Concentration profiles to illustrate this case are shown in Figure 10. In Figures 10(a) and (b)
we plot the stable, doubly-periodic wave emerging from �n;2 (for � = 1�2) and Figures 10(c)
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Figure 10. Stable travelling waves for (a) a; (b) b for � = 1�2 (doubly-periodic); (c) a; (d) b for � = 4�0 (singly periodic); (e) a; (f) b for � = 1�7 showing the two
possible stable travelling waves.
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Figure 10 cont.

and (d) we plot the stable, simply-periodic waves emanating from �n;1 (for � = 4�0). In
Figures 10(e) and (f) we plot the two travelling waves that are stable for � in the interval
of multiple solutions (i.e. from � = 1�455 to � = 2�528), here we have taken � = 1�7.
For larger values of � the ramp-like structure (for a) and pulse-like structure (for b) for the
single-periodic waves observed previously (Figure 7) are also seen in this case.

5. Conclusions

We have considered the instabilities that can be induced in a system based on the cubic-
autocatalator reaction-kinetics model by the differential flow of the chemical species. We have
assumed that the reactant is supplied to the system at a constant rate from some precursor
present in excess and that this reactant is effectively immobilised within the system, with
only the autocatalyst being free to flow (at a constant rate) and to diffuse. We have identified
conditions under which the system, stable without the flow of the autocatalyst, can undergo a
linear instability as the flow rate is increased (characterised by our dimensionless parameter�).
This initial linear growth has been shown to equilibrate at finite (nonzero) amplitude patterns
by a weakly nonlinear analysis (valid close to the bifurcation points) and by numerical methods
(using path-following methods and numerical integrations of the initial-value problem). These
spatio-temporal patterns appear in the form of travelling waves of permanent form propagating
with a constant velocity and can have a singly-periodic, a doubly-periodic or even a higher
periodic structure depending on the choice of the parameters and of the initial perturbation.
We also found these waves to exhibit an asymmetry in that they travel only in the direction
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of the flow, a result similar to that reported from numerical studies for the Puschinator model
of the BZ reaction in [13]. Several cases were followed to large values of � and, in all cases,
no further bifurcations to more complex spatio-temporal structures were seen. This suggests
(though it is not possible to conclude from only a numerical search) that these travelling
waves are the only such structures that can arise in this differential-flow system when the
basic spatially uniform stationary state is unstable. These travelling waves of permanent form
are presently being considered in much more detail and will be reported in a subsequent paper.
Finally, we may add that it can be shown analytically that the differential aspect of the flow is
essential in supporting this instability: if the flow term involving � appears in both governing
equations, then the uniform state is stable for all � with � > 1 and � no longer plays the role
of a bifurcation parameter.
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